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Conclusions

Using the method of moments, which was applied
for the solution of the integral equations (3) and
(48), the ground-state energy and the excitation
spectrum of a one dimensional NV particle system,
interacting in a 0 (z;—z;) potential, have been cal-
culated.

The same method has been applied for the solu-
tion of Hulthen’s equation (65) from which the
ground-state energy and the magnetization of the
system have been calculated for the Hamiltonian
(61) and for 4= —1.

The expressions (23) and (30) corresponding
to the zero approximation of the moments method
can be used for all values of parameter y and 1
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except for the case y=0, which must be studied
separately.

The approximate results (55) and (56) are valid
for all values of the parameter S > 1. For large
and small values of 4 and for S~1 we arrive at
the well-known results of Lieb.

The most important result is the determination
of magnetization expression (82). This expression
corresponds to the zero approximation but is valid
for all values of 4 and in addition gives the actual
magnetization curve.

If the above magnitudes are calculated by the
use of higher order approximations the real solu-
tion of the problems are obtained. This can easily
be done since the system of coefficients is linear.
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The formalism presented in Part I has been developed further. By analytical methods we have

derived a formula for the linewidth

W=(I's+Ia) {14y T[1+y T/2!— (+1)2 T¥31— (7 46 y2—2) T%/4!
+% (31 y*+120 4156 2 +72 y+6) T4/5!+...]}

where y=1I"A/I's and T is a new dimensionless parameter which is proportional to the absorber

thickness. The application to Mossbhauer spectroscopy is discussed. The results are valid for en-

vironmental broadening of the Lorentzian type.

8. Summary of Results Obtained in Part I

In Part I of this investigation !>, we considered
the total intensity — of an originally Lorentzian line —
that is transmitted through a layer of Lorentzian
absorbers. This transmitted intensity is given by

P(4E) =P(0) tran(y, s; 2)
where the transmission function is defined by

exp{—s/[1+ (z/7)®]}
T 1+ (z40)® dz.

For the definitions of the various symbols, the read-

1
tran(y, s; ) = 7J‘
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er is referred to Sections 1 and 2. We continue to
employ the convention, adopted in Section 2, that
the limits of an integral are — oo and + oo when
they are not indicated explicitly.

Our main result was that the transmission func-
tion can also be represented by a series,
w1

tran(;/, S5 x) = z 7(Tms|) ‘ Qm(75 2:)
m=0 .
1 (—s)» 1 s
+ '2 - 1 = Qv(?s I) i_ '2 ;y Qv(?’x)
for »=>s. (8.1)

15 Part I appeared in Z. Naturforsch. 23 a, 1439 [1968]. Sec-
tions, equations and references of Part II are numbered
consecutively after those of Part 1.
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TRANSMISSION OF A LORENTZIAN SPECTRAL LINE

In Section 5 it was stated, erroneously, that a suf-
ficient condition for the validity of Eq. (8.1) is that
v 2 s—1; upon reconsideration we conclude that a
sufficient condition is simply » 2> 5.

The functions Q,, are related to the polynomials

Clm by

Qm(y’ z) = 121(;}/X)l Gin(7) (2.6)
where X =22+ (y+1)2 and
1
Cin(7) = gz 2 alk,,m) Y71 (2.8)
k=1

The numerical coefficients a(k, [, m) can be generat-
ed by the recursive formulas (2.9), beginning with

a(l,1,1) =a(2,1,1) =1.

In Section 4 various special cases were discussed
in terms of the fractional absorption defined by

(8.2)

In Section 6 we have answered the question: What
kind of environmental broadening preserves the
Lorentzian form of the cros section as a function
of energy?

e(y,s;2) =1 —tran(y, s; x).

9. Introduction to Part I

In Part I we raised the question whether or not
the coefficients a(k, [, m) are integers for all values
of the indices. In Section 10 we present a proof that
all these coefficients are indeed integers. In the
course of this proof, we derive direct formulas for
the polynomials G, , so that we are now able to
compute the G, without having to resort to recur-
sion formulas.

If the transmitted intensity P is plotted as a func-
tion of AE with the parameters y and s being kept
constant, the curve thus obtained is called a reso-
nance curve. A quantity of interest is the width W
of the resonance, defined by the equation

e(y,s; W[I's) = Y e(y,s;0). (9.1)

One way to deal with Eq. (9.1) is to solve it nu-
merically 1! by use of the Newton-Raphson method.
This approach requires a knowledge of the deriva-
tive J¢/Qz. Section 11 is devoted to the calculation
of this derivative.

In Section 13 we solve Eq. (9.1) by analytical
methods and obtain for W a power series in T, a new
dimensionless variable which is proportional to s.
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The range of validity of this formula for W is treat-
ed in Section 14 by comparison with exact values.
Section 15 deals with the application to Méssbauer
spectroscopy.

10. Direct Evaluation of G,

The results of Section 3 suggest that the poly-
nomial G, can be written in the form

+1)2l—m
Cn(r) = T g i m(n). (10.1)
In particular, since G, = (y +1)™, we have
go,m= 1. (10.2)
Furthermore, from (3.1) we obtain
2m! 1 [(2m) 3 (m—-1) 4
gm,m+1— (m1)2 (7+1)m - (m)zgl(z—l)yl L
(10.3)

In general, ¢,,_;» is a polynomial of degree
m—[—1 in y,

i .
Gim= .Zla(i, jom) yiTt. (10.4)

Here we have introduced the subscript j=m -1,
which ranges from 1 to m — 1.

From Eq. (2.7a) we obtain a recursion relation
for gjm:

1 . : ,
gistme1=|12Bjy+m+j)+(m—j—-1) gjs1,m

d 10.
-2y(r+1) dy Jim| - (15)
By applying the method of mathematical induc-
tion to (10.5), we have proved the following equa-
tions

gi,m=m,
Go.m=m[} (m+1) +27],
g m=m[E (m+1)(m+2) +2(m+1)y+57%],
g, m=m[ds (m+1) (m+2) (m+3)
+(m+1)(m+2)y
+7(m+1) y2+14 %],
gs.m=m[i35 (m+1) (m+2) (m+3) (m+4)
+3i(m+1)(m+2)(m+3)y
+ 3 (m+1) (m+2)y?
+24(m+1) y3+4294].

It looks as if the coefficient a(Z, j, m) can be written
as the product of two factors

a(i,j,m) =G, ) (™77

m—1

(10.6)
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where (i, j) does not depend on m. This is clearly
true for 1 <j < 5. Now we need to prove that
(10.6) is true for al values of j.

By inserting (10.4) into (10.5) and then equat-
ing the coefficients of like powers of y, we are led to
: 1 . :
a(l,j+1,m+1) = - [((m—j—=1)a(l,j+1,m)
m)],

a(i,j+Lm+1) = {(m—j—1) a(i,j+1,m)
+2[(Bj—i+2)a(i—1,j,m)
+(m+j—i+1)a(i,j,m)]},

where it is understood that a(z, j,m) =0 if i>j. We

substitute (10.6) in these recursive formulas and
obtain

+2(m+j) a(l, j,

l+3[(3] i+2) f(i—1,))
+(]—z+2 B, 7] . (10.7a)
, it follows that £(1,1)

Bli,j+1) =

Since g1, m=0a(1,1,m) =m
=1, and therefore

p(L,j)=1.

The formulas (10.7) are independent of m. This
proves that our assumption (10.6) is valid for all
values of the indices.

(10.7b)

Now we can evaluate (i, j) by considering the
case m=j+ 1. From (10.3) we have

@hn!
R )
But according to (10.6)
5 & g 2 +1—
a(l’]’]+1) ﬂ(l,])( d l)

Comparison of the last two equations leads to a
direct formula for ﬂ(i, j), namely

ﬂ(l ]) H_l (z—l)'

By substituting (10.8) back into (10.6), we obtain

a direct formula also for a (i, j, m)

QH(ZJ')(EJ:) | (2/')(!",#,1':')
j i—1/\ m—1 j\i—1 m

(10.9)

(10.8)

a(iy j9 m) =

which is valid for all values of the indices

L £ i m,

2a(k,l,m) y*
k=1
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The last result allows us to write the following ex-
pressions for Gy,

+DA-m m "Sem—20\(2m—1—i)| ;4
Glm— C 4m—l m—L ; ( i—1 )( m )/
for m>1,1l<m, (10.10)
Gum=(y+1)™ for m Z 1.

With Eq. (10.10) one can perform the direct com-
putation of any Gy, , without having to go through
the computation of the Gy, of lower index, as re-
quired when using recursion formulas. However we
want to point out that, when a sufficiently large
number of the G, needs to be computed, then the
recursive fomulas may turn out to be more efficient
than the direct formulas.

Our next task is to prove that the a(k, [, m) are
integers. First we show that the a(Z,j, m) are in-
tegers. For i =1 we have

a(,j,m) = (")

m—1

which is an integer because all binomial coefficients
are integers. For i>1, it is easily verified with the

aid of Eq. (10.9) that

;& 2 2j—=i\|(m+j—i

a(i, j,m) = {(L—]l) _2( ;]—2 )]( m—]1 )
which is clearly also an integer. From (2.8), (10.1)
and (10.4), we obtain
1+1
=1 (7-}-1)” '”?:x(z m—1,m) yz 1,
In general, if a polynomial with non-integral coeffi-
cients is multiplied by 7 +1, the resulting poly-
nomial also contains non-integral coefficients. On
the other hand, if a polynomial with only integral
coefficients is multiplied by 7 +1, the new poly-
nomial has only integral coefficients. It follows that
the a(k, [, m) are integers.

11. Slope of Resonance Curve

The slope P/ (AE) of the resonance curve is
proportional to the derivative J¢/Jx
3P

Je
3dn = 3,

This derivative is given by

R m
% 0 (ra) (11D



TRANSMISSION OF A LORENTZIAN SPECTRAL LINE

where

On = — (11.2)

a Qm— Z l( )Glm-

In order to become able to investigate the con-
vergence of the series in (11.1), we must find an
upper limit to the ratio QJ,+1/Qs. We begin by
changing the variable of integration in (2.3b) to
y =z +x, and we obtain

»Tall—o ] 1+
Now
Om _2m [ v y—a) dy
oz  Pal)l—a)+y 1+y*

After changing back to z and making use of (11.2),
we obtain

Q}n (7}, Z) =

mX j(i&_)7n+l_,z,dz,__._
T yaz ) \224y? 1+ (z+2)2

From (11.2) it is obvious that Q}, is an even func-
tion of x. Therefore we have also

2 \ymtl zds
On (1,2) = 57 (Zgﬂg) Ta—g- 114
We add (11.3) to (11.4) and then divide by 2,

thus obtaining

(11.3)

1_2ij‘( },2 )m+1 2dz
Om = rix )\ 4y 1+ G+2)* 11+ (z—2)%] ~

By inspection of the last equation, we perceive that

Qns1/(m+1) <Qu/m
or Q}n+1/071n<(m+1)/m-

Let us now rewrite Eq. (11.1) as

Qm+z(

(11.5)

s)m

3 2« "g ]
3z X =i Qm
where » is to be chosen so that the absolute value
of the term with m = is less than that of the pre-
ceding term; furthermore in the second summation
the absolute values of the terms must decrease with
increasing m. This condition requires that

Qm+t

(0 m+1

for m=2v—-1. (11.6)
In view of the inequality (11.5), a sufficient con-

dition for (11.6) is

y=>s+1.
Now we can write
Je 2 (—-s)m —s)”
= z= Oh+3 S QiEH,

(11.7)
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where the error E is given by
E (s/) Qv (7,2).
By comparing (11.2) with (2.6), we find that

@ Zv0,,
which leads to

E <vE,,

where E, may be estimated by means of (5.3).
At times it may be useful to have a simple esti-
mate for the upper limit of J¢/3x. We differentiate

both sides of Eq. (2.2a) with respect to
e 2 z4zx [ —»%s

5 = 7 ) T GantE &P |2yt | 4

Next we apply the Cauchy-Schwarz inequality (see
Section 5) and obtain

(gi) ( )ZJ‘ [1+z(:r£?)‘ rd

. J [ el —p g Gy
1+ (z+2)2 Z.
[
1+ @+o2| “7 <1+y2)2
~00(1’ 0) 01(170) = %
and
1 { exp{—7%s/(2>+7) } ]2d
) 1+ (z+7)2 g
1 (expl{—r"s/(E+y}
<%= [ T+ttt dz=1l-¢,
so that (Q¢/x)2<2(1—¢). (11.8)

12. New Variables

It turns out that the algebraic labor of calculat-
ing the width will be reduced, if we replace s and z
by a new pair of dimensionless variables

T=s/[4(y+1)] and &=z/(y+1).
Furthermore we define
gn(§) =[4(y+1) 1" Qn (7, 2)

which assumes the rather simple form

ant®) = 3 () gnim(). (121
Thus
47 8y 2y
G- ipes %= ipE(lt iis)

e M0 0 (5



138
Another useful quantity is defined by

n < nl 47 ! 2
@O = 3 () gmim),  (22)

which is a generalization of g¢,, since g,, = ¢%. This
quantity satisfies a recursion relation

3 . 28

=S _ n+1
3F qm = —

Ty O
Finally we introduce the function

1(59 T) _ 2_?}7‘5(7’1 53 0)

(12.3)

£(y, 55 2)

We have not indicated explicitly that ¢, and 4 are
also functions of y because in Section 13 the quan-
tity y will play only the role of a constant para-
meter. After appropriate substitutions, we obtain
the more explicit formula

27 m=1 m!

rm(é:) = qm(s) - %Qm(o)-

For certain values of the partial derivatives of 4,
we adopt the notation

Qhtk
sgiare 26 T) |,

—ra(®)  (124)

where

A= (12.5)

13. Width of Resonance

In terms of the new variables, Eq. (9.1) becomes

i 2 ( T)ym—1
X

A(w,T) = T AT rm(w) = (13.1a)
where we have set
W=w(y+1) Ig. (13.1b)

We regard w as a function of T that is defined !¢
implicitly by Eq. (13.1a). We denote the derivatives
of w(T) as

w® (T) = a’ﬁ w(T).

Also we abbreviate

wy=w(0).

In order to solve Eq. (13.1a), we expand w(T) in
a Maclaurin series

w=w, +/,Z'1W(k)(0) “T*[E! . (13.1¢)

16 The present definition of w is different from that employed
earlier by HEBERLE 11,
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The value of wy is found by letting T— 0 in
Eq. (13.1a). This leads to

(1/27) ri(wy) =0 or

Thus we obtain

1/(1 +wg?) = 1.

w0=1.

The other coefficients w® (0) will be evaluated by
repeated differentiations of Eq. (13.1a) with respect
to T and then letting T approach zero. Since the
function 4 depends on T explicitly and also impli-
citly through w, the first differentiation yields
(i 3
dT Sw
w®(0) = _101/110 .

+ 987) 2w, T) =0 (13.2)

and

We obtain these partial derivatives by differentiating
(12.4)

(m=1) (=T)m—2
m!

rm(w) 2
(13.3a)

3 S (=Mm-1 d
al(w, §=:

e gu(w). (13.3b)

AsT— 0, w— wy=1, and we have
dog=— (1/4y) ra(wg) =7
A= (1/27y) (dgy/dw) -1 = -1,

and

so that
w®(0) =y.

We are now equipped to calculate w® (0) by dif-
ferentiating (13.2) with respectto T

2w 3 dw\2 32
[dT2 E + () 5
K
dT dwaT arz] A(w, T) =
Lettiﬁg T — 0in (13.4), we obtain
w®(0) = — {[w® (0) 12499+ 2 w®(0) Ayy + Ag2} /A1

The three required partial derivatives are calculated
by differentiating (13.3),

(13.4)

+2

_1 g (=D Ld[_ 2w
w2y ,%5, dw 1+w2q" w) (13.5a)
1 3 T)m 1 2
K2 ,El‘m' (1+1iﬂ)2 [ ~1) gn+20® gu] ,
1S (;TJL, wo o
QwdT ,,;zg( m—1) 142 M2

(13.5b)
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% _ E (m—2) (m—1) =D (=T)m—3 T) rm( ). On the other hand, for A =0, we have
T* 2y p=3 Z (=1)k
(13.5¢)  *0.5= (k1) 2 T +1(t0) (13.7b)
Setting T=0 and w=w,=1 in (13.5), we obtain _ L‘IC%H lz (271-1) (29) grot ot et
Aag= (1/2 7) 4% (wo) =1, -
A= (1/49) qi(wy) =142y, The last step was performed with the aid of (12.1).
doz= (1/67) rg(mwy) = —27(1 +27), By considering Eq. (12.2), it is not difficult to
and convince oneself that the following formula is valid
w® (0) =92 L
0) =7 [m gm (w)]w=w
In general, after n differentiations of (13.la) m (13.7¢)
with respect to T, we have =2 s () (29) gm-tm )
=1
dw 3
(d—Taiw + ) A(w,T) = (13.6)  ywhere pr-1(l) is a polynomial of degree h—1. By

applying the recursion relation (12.3), we have

This equation, for T =0, consists of terms that are 2
1 ’ evaluated the first four of these polynomials

linear in 4;;, where h and k are non-negative inte-
gers that satisfy the condition hA+k < n. From p=-1, pi=l, ps=-—(1+1)(1-1),
(12.4) one can see that, for >0, ps=(I+1) (B—1-3).

1 (=1)k [ 3k
hE= 9 (k+1) y [awh Gk +1(w) } — (13.7a)  For h =5, we obtain

» 15 20
— g =8 [ (1+u172)3 (2gnt +3 0% + g0t + (71?:2)4 (6 g% +11 g2 +6 gh+S + g0t
(13.8)

4(1+w2) (24 q"+1 +50 q""'2 +35 q"+3 +10 qztn+4 +q$+5)

which leads to pa=—(U+1)(1+2)(P-31-3).
By using these results together with the formulas (13.7), we have calculated all the partial derivatives
contained in (13.6) for n < 5. These derivatives, evaluated for w=1 and T =0, are listed in the appen-
dix of Part II.
Proceeding in the same manner as above in the case of n=1 and n=2, we obtain
w®(0) =y(y+1)? and w®(0)=—y(7r*+6y*-2).

For n=5, Eq. (13.6) becomes

[d% 3 dw diw d2w d3w] 22 diw 32 dw dw d3w d2w\2] dT13

| a7 3w 5[&%‘@ drzﬁ]m +5 974 3war +5ﬁ[2ﬁﬁ 3(?”3;

+10 T s +5[3(3Tu;> 4%%]72%% +10(57) G5 s +3 %}%[:’; T
Wit o 5(%%) (5 wrer +2 B war +2505m) V)
5d_T awa;w + aTs} A(w,T) =

By using the results listed in the appendix, we obtain from Eq. (13.9)
w® (0) = (7/3) (31 y*+120 93+ 156 2+ 72y +6).
Thus the first six terms of the series (13.1c) are

T T2 T314 120 y34156 y24-72 6
w5=l+yT[1+Fy—§!—(7+1)2 (1 +6y2—2) ¢ D AXHINPEBOPHT2H6) (13 19)

We have presented Egs. (13.8) and (13.9) as a starting point for anyone who may wish to carry this
calculation to higher values of n.
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14. Accuracy of Width Formula

The series (13.1c) can be made as accurate as
one wants by taking a sufficiently large number of
terms. We have seen, however, that in practice the
algebraic labor of calculating w®) (0) increases ra-
pidly with k. Therefore the question arises how ac-
curate our formula is when it is terminated as in
(13.10).

An obvious method of estimating the error incur-
red is to use Taylor’s formula with remainder. Thus
we can write

w(T) =w,(T) +R,.1(T),

where
n k
wy=wy+ 3 wh (0) Ty (14.1)
K=1 -
and
Rooi=w0 0 (OT) 12 0<O<1
n+1= (n+1)! ’ 9

Although this is the ideal way to treat the problem
of accuracy, we cannot apply it readily because it
is very difficult to estimate the sixth derivative of
w(T) for T>0.

A direct way of ascertaining the accuracy of
(13.10) is to compute exact values of w and to
compare them with the corresponding values of wj .
What range of y should be covered by such compu-
tations? To answer this equation, we remember that
the main area of application is in Méssbauer spec-
troscopy. Therefore the range of y should be chosen
so as to cover the cases of interest in this area. As
it was discussed in Section 6, 7 & 1 indicates the pre-
sence of environmental broadening. Our entire for-
malism is valid only if (see Section 6) the environ-
mental broadening is such that the average cross sec-
tion has a Lorentzian dependence on energy

fArﬂres Ny

(o)) =1TFtE—Enjimary - (142

We expect Eq. (14.2) to be a good approximation
only for values of %, close to unity. Similarly, in
considering the environmental broadening in the
source, we conclude that our formalism is likely to
be valid only for values of xg in the neighborhood
of unity. Thus it appears that only values of y in the
vicinity of y =1 are of immediate interest. Therefore
we have chosen y = 0.5, 1.0, and 2.0 for our investi-
gation of the accuracy.

Values of w were computed by the Newton-Raph-
son method in two ways:

S.FRANCO AND J. HEBERLE

(1) The equation
E(V,S;W.’C) - %6(753;0:0

was solved for w, . The function ¢ and the derivative
O¢/Qw, were evaluated by numerical integration, as
in the work of HEBERLE !! for the case y = 1. Then

w=w,[(y+1).
(2) We solved Eq. (13.1a) for w. The derivative

04/3w was also computed as a series by making use
of the results of Section 11. Thus numerical integra-
tions were avoided entirely.

Satisfactory agreement was achieved between the
results that were obtained by two so different me-
thods; this constitutes a check on the correctness of
our mathematical developments.

T Y
0.5 1.0 2.0

0.001 1.0005 1.0010 1.0020
0.05 1.0253 1.0512 1.1046
0.10 1.0511 1.1043 1.2165
0.20 1.1035 1.2143 1.4505
0.30 1.1564 1.3258 1.6821
0.40 1.2089 1.4360 1.9007
0.50 1.2605 1.5426 2.1034
0.60 1.3108 1.6448 2.2908
0.80 1.4068 1.8354 2.6272
1.0 1.4965 2.0089 2.9247
1.2 1.5804 2.1681

14 1.6592 2.3155

1.6 1.7336

1.8 1.8041

2.0 1.8714

Table 1. Computed values of the width w for various values
of T, and for three different values of y. The last digit in w
is uncertain by *1, or less.

The values of w are listed in Table 1. (In the case
of y=1.0, values of w, are available in graphical
form 17 for 0 <t < 29.) The case of y=2.0 and
T =1.0 required the largest number of terms in Eq.
(13.1a); it was necessary to include the term m = 37
in order to achieve the desired accuracy. A compari-
son of the values of w with those of w; is presented
in Fig. 1. The result of the comparison may be epi-
tomized by stating, somewhat conservatively, that
for these three values of y the deviation | ws—w | is
less than 2.0% of w for s < 5.0. In looking at Fig. 1,
one may wonder why so many terms are required to
describe curves that look almost like straight lines.

17 1. D. RoBerTs and J. O. THOMsON, Phys. Rev. 129, 664
[1963] ; see also D. W. HAFEMEISTER and E. B. SHERA,
Nucl. Instr. Methods 41, 133 [1966].
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Fig. 1. Dimensionless width as a function of the thickness
parameter T. The solid curves represent the exact values of w,
whereas the dashed curves represent the approximate values
ws . The arrows indicate where w and w; differ by 2.0%.
It turns out that wy is also a good approximation
of w, and that it is true also for wy that its accuracy
is better than 2.0% for s < 5.0. Of course, for small
values of T, the accuracy of wjs is much better than
that of wy .

15. Application to Mossbauer Spectroscopy

In terms of the quantities introduced in Section 6,
we have

- 7-\("3+Xx) (4/4). (251}
Then, according to (13.10), the observed width is
given by
e L3 _ @ @
W=F(("SJ”‘A)“/“:Z'(WF,:\) 31a?

l2iglreolz) 2

5,3(%41;\7[31“20( 5) 1156 (2 )2
+72 (Z) +6 (;%)4] +... ] : (15.2)

For a vanishingly thin absorber, ' becomes
Wo=(#g+25) I'=T's+ T,
in agreement with the result of Section 4a. We re-

18 V. A. BRYyukHaNov, N. N. DeELyAGiIN, and R. N. Kuz’MIN,
Zh. Eksp. Teor. Fiz. 46, 137 [1964].

19 ), W. HAFEMEISTER, G. DEPAsQuUALL, and H. DE WAARD,
Phys. Rev. 135, B 1089 [1964].
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write Eq. (15.2) in terms of I's, I'y and W,
W=W,+1I'(s/4) + 2,- W, (z/4)2

- "3!7?’ (t/4)® +

and we note that, to the second order in ¢, W is a
function of W, but does not depend on either I's
or I' separately.

A frequent experimental problem is to measure fa
and to determine the extent of environmental broad-
ening by measuring W, . In Section 6 it was stated
that

(15.3)

t=an0res: (15.4)

where n is the number of nuclei of the resonant iso-
tope per unit area of the absorber. By measuring W
for various values of n and then fitting these data
with a suitable formula, it is possible to determine
fa and W,. This procedure has been used by
BRYUKHANOV et al.!® for Mg,Sn!'®, by HAFEMEI-
STER et al.!® for compounds of I'?»°, and by PER-
Low 20 for compounds of Xe!?.

We suggest that our width formula, as it is written
in (15.2) or (15.3), is perhaps more suitable for
this purpose than the previously used formulas.

16. Further Remarks

If a digital computer is used to compute & ac-
cording to the method outlined in Section 8, it ap-
pears necessary to create a three-dimensional array
for storing the coefficients a(k,l, m). The improved
formulation presented in Section 10 offers the ad-
vantage that, according to Eq. (10.10), only a two-
dimensional array of binomial coefficients is requir-
ed. Thus a considerable saving in memory can be
effected.

It should not be thought that the new variables T
and &, which were introduced in Section 12, are al-
ways superior to s and z. It seems to us that the new
variables are better suited to the series, whereas the
various integrals have a simpler form if expressed
in terms of the old variables s and z.

Among our reasons for listing the values of w in
Table 1 is their usefulness in testing a program for
computing &. This can be done by computing & for
=0 and for = (y+1) w and checking whether
or not Eq. (9.1) is satisfied by these values of e.

20 G. J. PerLow, in: Chemical Applications of Mossbauer
Spectroscopy, edited by V. I. GoLpanskir and R. H. HEr-
BER, Academic Press, New York 1968, p. 394 fi.
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From the results of Section 10, one can obtain a formula for a definite integral that is not listed in the

standard tables

+ o0
e v de _ f[ et ™ a(a+l) Jm-t < mAl—k\ _
j(22+a2) 1+ (z41)2 _nl x2+(a+l)2] L z l[4(a+l)]l 224 (a+1)2 ] Z( )( m ) j 1}'
Similarly, from Egs. (10.10), (11.2) and (11.3), we obtain
+o0
j’( a? )'"+1 zdz __ =ma H a(a+1) ]’”
22+4a? 1+ (z4+22 224 (@+1)? |[22+ (a+1)2
] 2 () () e
g Z l[4<a+1)]l[2+(a+1) } 2 . e

In both formulas it is assumed that a = 0.

These two articles have dealt with the behavior
of ¢ and w in the case of absorbing layers of small
thickness. An open question remains as to how these
quantities behave for large values of s and 7.
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Appendix
We list here the partial derivatives of 1(&, T) evalu-

ated at £=1 and T=0. The notation is defined by Eq.
(12:5) .

lo1=7, hoe=—27y(2y+1),
fos=7(149*+16y+5),
Aog=—27y(2493+4592+30y+17),
Aos= (2 7/3) (248 74+ 660 y*
+693 y*+336 y+63),
Ao=-1,
Ap=—2(y+1)(2y+1),
Ai3=893+25924+209+5,
Aia= —2(89y*+45y3+63 y2+359+17),

Ap=2y+1,

Ayg=1 Ayy=—(4y+1),
Aes=2(62+57+1),

log=— (y+1) (3272 +25y+5),

430=0, A31=67%,
lgg=—4y(8y+3), A= —6,
Ay=6(y+1), A50=30.



