
Conclusions 

Using the method of moments, which was applied 
for the solution of the integral equations (3) and 
( 4 8 ) , the ground-state energy and the excitation 
spectrum of a one dimensional N particle system, 
interacting in a d ( x j - x j ) potential, have been cal-
culated. 

The same method has been applied for the solu-
tion of Hulthen's equation (65) from which the 
ground-state energy and the magnetization of the 
system have been calculated for the Hamiltonian 
(61) and for A = - 1 . 

The expressions (23) and (30) corresponding 
to the zero approximation of the moments method 
can be used for all values of parameter y and X 

except for the case y = 0, which must be studied 
separately. 

The approximate results (55) and (56) are valid 
for all values of the parameter 5 ^ 1 . For large 
and small values of / and for 5 « i l we arrive at 
the well-known results of Lieb. 

The most important result is the determination 
of magnetization expression ( 8 2 ) . This expression 
corresponds to the zero approximation but is valid 
for all values of 1 and in addition gives the actual 
magnetization curve. 

If the above magnitudes are calculated by the 
use of higher order approximations the real solu-
tion of the problems are obtained. This can easily 
be done since the system of coefficients is linear. 
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The formalism presented in Part I has been developed further. By analytical methods we have 
derived a formula for the linewidth 

W= (rS + rA) {1+7 T[\ + y T/2\-(j> + l)2 T2/3!- (7 y3 + 6 y2-2) T3/4! 
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where y = r \ / r s and T is a new dimensionless parameter which is proportional to the absorber 
thickness. The application to Mössbauer spectroscopy is discussed. The results are valid for en-
vironmental broadening of the Lorentzian type. 

8. Summary of Results Obtained in Part I 

In Part I of this investigation 15, we considered 
the total intensity —of an originally Lorentzian line — 
that is transmitted through a layer of Lorentzian 
absorbers. This transmitted intensity is given by 

P(AE) = P ( o o ) tran(y, 5; x) 

where the transmission junction is defined by 

, , * 1 f exp { — s / [ l + (z/y)2]} tran(y,s; x) = - j Y+J^)* <1* . 
For the definitions of the various symbols, the read-
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er is referred to Sections 1 and 2. We continue to 
employ the convention, adopted in Section 2, that 
the limits of an integral are — 00 and + 00 when 
they are not indicated explicitly. 

Our main result was that the transmission func-
tion can also be represented by a series, 

»-1 ( — s)m 
tran (y,s;x) = 2 ~ Z I " Qm (7, 

m=0 m ' 

+ I ^QAy,x)±j^Qv(y,x) 

for v ^ s . (8.1) 

15 Part I appeared in Z . Naturforsch. 23 a, 1439 [1968] , Sec-
tions, equations and references of Part II are numbered 
consecutively after those of Part I. 
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In Section 5 it was stated, erroneously, that a suf-
ficient condition for the validity of Eq. (8.1) is that 
v ^ s — 1; upon reconsideration we conclude that a 
sufficient condition is simply v ^ s . 

The functions Qm are related to the polynomials 
Oim by 

Qm(y,x)= I (y/X)lGlm(y) 
i=i 

(2.6) 

where X = x2 + (y + 1)2 and 
z+i "I i T 1 

Glm{y) = ^ I f l f U m ) yk~l. (2.8) 

The numerical coefficients a(k, I, m) can be generat-
ed by the recursive formulas (2.9), beginning with 

a ( l , l , l ) = a ( 2 , 1 , 1 ) = 1 . 

In Section 4 various special cases were discussed 
in terms of the fractional absorption defined by 

e(y, s; x) = 1 — tran(/, s; x). (8.2) 

In Section 6 we have answered the question: What 
kind of environmental broadening preserves the 
Lorentzian form of the cros section as a function 
of energy? 

9. Introduction to Part II 

In Part I we raised the question whether or not 
the coefficients a(k,l,m) are integers for all values 
of the indices. In Section 10 we present a proof that 
all these coefficients are indeed integers. In the 
course of this proof, we derive direct formulas for 
the polynomials Gim, so that we are now able to 
compute the Gim without having to resort to recur-
sion formulas. 

If the transmitted intensity P is plotted as a func-
tion of AE with the parameters y and s being kept 
constant, the curve thus obtained is called a reso-
nance curve. A quantity of interest is the width W 
of the resonance, defined by the equation 

r / r s ) = £ £ ( 7 , 5 ; 0 ) . (9.1) 
One way to deal with Eq. (9.1) is to solve it nu-
merically 11 by use of the Newton-Raphson method. 
This approach requires a knowledge of the deriva-
tive de/dx. Section 11 is devoted to the calculation 
of this derivative. 

In Section 13 we solve Eq. (9.1) by analytical 
methods and obtain for W a power series in T, a new 
dimensionless variable which is proportional to s. 

The range of validity of this formula for W is treat-
ed in Section 14 by comparison with exact values. 
Section 15 deals with the application to Mössbauer 
spectroscopy. 

10. Direct Evaluation of G/m 

The results of Section 3 suggest that the poly-
nomial Gim can be written in the form 

Gim(y) = 9m-l,miy). (10.1) 

In particular, since Gmm = (y + 1)m , we have 

9o,»»= 1 • (10.2) 
Furthermore, from (3.1) we obtain 

2 771 2 i=1 
m-V 
i - l i 

i,i—1 

(10.3) 

In general, gm-l,m is a polynomial of degree 
m — I — 1 in y, 

9jm= 2 a(i , / ' ,m) yi 1. 
i = l 

(10.4) 

Here we have introduced the subscript j = m —I, 
which ranges from 1 to m — 1. 

From Eq. (2.7a) we obtain a recursion relation 
for gjm: 

2(3/> + m + j)+ (m-j-1) gj + u 9 i + 1, m + 1 — 

- 2 7(7 + 1) d 7 gjTl 
(10.5) 

By applying the method of mathematical induc-
tion to (10.5) , we have proved the following equa-
tions 

9hm = m, 
g-2,m = m[k (m + 1) +2 y], 

g^m = rn[l (m + 1) (m + 2) + 2 (m + 1) y + 5 y2], 

g4,m = m[Ji (m + 1) (m + 2) (m + 3) 
+ (m + 1) (m + 2) y 

+ 7(m + l ) y2 + Uy3], 

9ö,m = m[ih (jtc + 1) (m + 2) (m + 3) (m + 4) 
+ ^ (m -h 1) (m. + 2) (m + 3) y 

+ | (m + 1) (m + 2) 72 

+ 24(m + 1) y3 + 42 y4] . 

It looks as if the coefficient z(i, j, m) can be written 
as the product of two factors 

'771 + 7 — 
771 — 1 a(i,j, m) = ß(i, j) (10.6) 



where ß (i, j) does not depend on m. This is clearly 
true for 1 ^ j 5. Now we need to prove that 
(10.6) is true for al values of j. 

By inserting (10.4) into (10.5) and then equat-
ing the coefficients of like powers of y, we are led to 

a ( l , / + l , m + l ) = — [ ( m - / - l ) a ( l , / + l , m ) 

+ 2(m + j) a(l,7,1»)], 

a(i ,7 + l , / n + l ) = — { ( m - 7 - 1 ) a( i , / ' + 1, m) 

+ 2 [ ( 3 j — i + 2)a(i — 1, j, m) 

+ (m + j - i + l)a{i, j,m)]} , 

where it is understood that a(i, j, m) = 0 if i > j. We 
substitute (10.6) in these recursive formulas and 
obtain 

ß(l,j + l)=ß(l,j), 

ß(i,j + l) = [ (3 7 — i + 2) ß(i — 1, /') 

(10.7a) 
2 j-i+ 

+ ( j - i + 2) ß(i,j)] . 

Since g\t m = a ( l , 1, m) = m , it follows that ß(l, 1) 

= 1 , and therefore 

£ (1 ,7 ) = 1 - (10.7b) 

The formulas (10.7) are independent of m. This 
proves that our assumption (10.6) is valid for all 

values of the indices. 
Now we can evaluate ß (i, j) by considering the 

case m = j + 1. From (10.3) we have 

a (i, 7,7 + 1) 

But according to (10.6) 

(2/) ! (j-l 
002 \i~ 1 

2/ + 1 - 1 
cc(i,7,7+l) =ß(i,j) 

Comparison of the last two equations leads to a 
direct formula for ß(i, j), namely 

ß(i,i) = 
j—i+l ( 2j 

i— 1 (10.8) 

By substituting (10.8) bade into (10.6) , we obtain 
a direct formula also for a(i, j, m) 

a(i, j, m) = 
j—i+l I 2 j \lm-\- j—i 

i—1/\ in — 1 
m l 2 j \/m+j — i 
j \i—l)\ m 

(10.9) 

which is valid for all values of the indices 

1 ^ I ^ i ^ m . 

The last result allows us to write the following ex-
pressions for G\m 

Tlm 
(y + l )**-» m m — l 2 i=1 

2 m — 2 l\(2m — l—i 
4m-l m — l .f^ \ 

for m > 1, I < m , 
Gmm=(y + l)m for m ^ l . 

i - l 

(10.10) 

With Eq. (10.10) one can perform the direct com-
putation of any Gim, without having to go through 
the computation of the Gim of lower index, as re-
quired when using recursion formulas. However we 
want to point out that, when a sufficiently large 
number of the G\m needs to be computed, then the 
recursive fomulas may turn out to be more efficient 
than the direct formulas. 

Our next task is to prove that the a(k,l,m) are 
integers. First we show that the a(i,j,m) are in-
tegers. For i = 1 we have 

(m+j — r 

which is an integer because all binomial coefficients 
are integers. For i > l , it is easily verified with the 
aid of Eq. (10.9) that 

a(i,j, m) = 
2 j 

- 2 
2 j-i m+j—i 

m — l 

which is clearly also an integer. From (2.8) , (10.1) 
and (10.4) , we obtain 
1 +1 m-l 
2a(k,l,m) yk^={y + \)2l-m2a{i,m-l,m) f ' 1 . 

A- = l i=1 

In general, if a polynomial with non-integral coeffi-
cients is multiplied by 7 + 1, the resulting poly-
nomial also contains non-integral coefficients. On 
the other hand, if a polynomial with only integral 
coefficients is multiplied by 7 + 1, the new poly-
nomial has only integral coefficients. It follows that 
the a(k, I, m) are integers. 

11. Slope of Resonance Curve 

The slope dP/d [AE) of the resonance curve is 
proportional to the derivative de/dx 

dP . 3e 
3 (AE) ~ ~ 71 A°dx' 

This derivative is given by 

v (~ 5 ) ' " ni ( \ Z - ,, Qm (y, x) m=1 m-
(11-1) 



where 
X 3 m 

Q™ = ~ ¥ 7 äz Q™ = I t 2 1 *lm (11.2) 

In order to become able to investigate the con-
vergence of the series in (11.1) , we must find an 
upper limit to the ratio Qm+i/Qm• We begin by 
changing the variable of integration in (2.3b) to 
y = z + x, and we obtain 

d y 

Now 
aQr 
dx I 

(.y-x)2 + y 

2 m 
y2 7i 

y2 

(y—x)2+y2 

1+y2 

>n +1 (y-x) dy 
1+y2 

After changing back to z and making use of (11.2) , 
we obtain 

mX C (_y2_\m+l z dz 
J2+f) Qh (y,x) . (11.3) 7" 71 X J \z"-|-j>'/ l + ( z + x)! 

From (11.2) it is obvious that Qh is an even func-
tion of x. Therefore we have also 

m +1 z dz 
ynx J \z2+y2/ 1 + (z-x)2' (11,4) 

We add (11.3) to (11.4) and then divide by 2, 
thus obtaining 

2m X 
y2 7i 

m +1 z2 dz 
0 1 , , , 
Vm y2n J \z2 + y2.' [ l + ( z + x ) 2 ] [ l + ( z - x ) 2 ] ' 

By inspection of the last equation, we perceive that 

Qm+1 / ( m + 1) <Q m/m 

or Qm+1 / & < ( m + l ) / m . (11.5) 

Let us now rewrite Eq. (11.1) as 
2 x 
X 2 m=1 

( - 5 ) ' 
Q l + I 

(-s)> 
Qm 

where v is to be chosen so that the absolute value 
of the term with m = v is less than that of the pre-
ceding term; furthermore in the second summation 
the absolute values of the terms must decrease with 
increasing m. This condition requires that 

Qm+l 

Qm m + 1 < 1 for m^>v-1. (11.6) 

In view of the inequality (11.5) , a sufficient con-
dition for (11.6) is 

s + 1 . 
Now we can write 

I m= 1 
(-s)m

nl I 1 (-*)* nl + Fi 
m ! 2 ± E * 

(11.7) 

where the error El is given by 

El (sv/v\) Ql (y,x). 

By comparing (11.2) with (2 .6 ) , we find that 

Ql£rQr, 
which leads to 

El £ v Ev , 

where Ev may be estimated by means of (5 .3) . 
At times it may be useful to have a simple esti-

mate for the upper limit of de/dx. We differentiate 
both sides of Eq. (2.2a) with respect to x 

de_ _ _2_ f z+x 
3x

 =

 ~ n J [l+(z+x) 2 ] 2 e X p 
—y-s 
z2 + y2 dz. 

Next we apply the Cauchy-Schwarz inequality (see 
Section 5) and obtain 

dx, 

But 

- M 

and 

2 
71 

Z + X 

z + x 
1 + (z + x)2 dz 

•I 
exp{-72 s/ (z2 + y2)} 

l+ ( z + x)! dz . 

l + ( z + x)2 d z = - f y 2 A y 
71 J (l+y2)2 

= ( ? o ( l , 0 ) - ( ? 1 ( l , 0 ) = i 

exp{— y2 s/ (z2 + y2) } 
dz 

that 

l+(z + x)2 

J_ f exp{ —y2 s/ (z2+yi) } 
TT J 1 -j- (z + x)2 

(de/dx)2 < 2 (1 — £). 

12. New Variables 

dz = 1 — £ , 

(11.8) 

It turns out that the algebraic labor of calculat-
ing the width will be reduced, if we replace s and x 
by a new pair of dimensionless variables 

T = s/[4(y + l)] and £ = x/(y +1). 

Furthermore we define 

qm(Z) = [4>(r + i)]mQm(y,x) 

which assumes the rather simple form 
« / 4 v 

qmtü = I (Y^J 9m-l,m(y). (12.1) 

Thus 

q t = 

qs = 

4 y 
T + l 2 ' 
24/ (7 + 1) 

1 + <T
2 

q 2- 1+£2 

47 \2 
+ 3 l+£ 2 

1 + 

+ 

27 
i+<T2 

4 7 \3 
i+£ 2 



Another useful quantity is defined by 

4 y \l 
q'm ' v ' " "" £ ( £ ) = 2 ' " ( i ^ f ) 9 m - i , m ( r ) , (12.2) 

which is a generalization of qm since qm = qln • This 
quantity satisfies a recursion relation 

— an - - - — a n + l Hm — 1 + f 2 

Finally we introduce the function 
s{y, s; x) — i s(y, s; 0) 

(12.3) 

m, t) = 2 yT 

We have not indicated explicitly that qm and X are 
also functions of y because in Section 13 the quan-
tity y will play only the role of a constant para-
meter. After appropriate substitutions, we obtain 
the more explicit formula 

where 

1 C— T) m — 1 
^ • " - i f J , —Ji r»<« 

rm (£) = 9rn(i) - 2 qm{0). 

(12.4) 

For certain values of the partial derivatives of X, 

we adopt the notation 

^hk = 
3 h+k „ 

~3fA 3Tk 1,T = 0 
(12.5) 

13. Width of Resonance 

In terms of the new variables, Eq. (9.1) becomes 

1 (-T)m-l 
X[w,T) = {~v 2 J — , Tm{w) = 0 (13.1a) 

2 y m = 1 ml 

where we have set 

w = w(y +1) r s . (13.1b) 

We regard w as a function of T that is defined 16 

implicitly by Eq. (13.1a). We denote the derivatives 
of w(T) as 

Also we abbreviate 
w0 = w (0). 

In order to solve Eq. (13.1a), we expand w(T) in 
a Maclaurin series 

oo 
W = w0+ 2 ^ W ( 0 ) - T k / h \ . (13.1c) 

16 The present definition of w is different from that employed 
earlier by HEBERLE N . 

The value of w0 is found by letting T 0 in 
Eq. (13.1a). This leads to 

( l / 2 7 ) r 1 K ) = 0 or 1 / (1 + w<?) = 1. 

Thus we obtain 
M>O = 1 • 

The other coefficients w ^ (0) will be evaluated by 
repeated differentiations of Eq. (13.1a) with respect 
to T and then letting T approach zero. Since the 
function X depends on T explicitly and also impli-
citly through w, the first differentiation yields 

and 11,(1) (0) = -XJX10. 

(13.2) 

We obtain these partial derivatives by differentiating 
(12.4) 

ÖT 2y m=2 ml 
(13.3a) 

3 U T\ 1 V d n „ M = 2 m ! ^ ~ q m { w ) . (13.3b) 
d iv 

1 , 

As T —> 0, w —w0 = 1, and we have 

X01= - (1 /4 y) ro (w0) =y 

and X10= (1/2 y) (dqjdw)w=1 = 

so that 
m;W(0) = y . 

We are now equipped to calculate w ^ (0) by dif-
ferentiating (13.2) with respect to T 

d2w 3 . /dw\2 32 

, d t ) 3 « ' 

32 ^ 
3 r-

d T- 3 w (13.4) 

_L 2 — 
^ d T 3 w 3 T X (w, T) = 0, 

Letting T —> 0 in (13 .4) , we obtain 

(0) = - {[«,<» (0) ] 2 ;.20 + 2 wW(0) Xu + X02}/X10. 

The three required partial derivatives are calculated 
by differentiating (13 .3) , 

3*A 
div2 2 y J~L 2 (-T)m-1 d 

m=l div 
2 w 

1 + w2 ql (w) (13.5a) 
1 i S ( _ r ) w - i 

7 mil (1+u;2)2 

_d2X 
div dT 

[ (wr — 1) q1m+2w2qll] , 

1 S (-T)m-2 
= - 2^ ( m - l ) — -/ m=2 1+u; 2 qh, 

(13.5b) 



1 V ( 9W n (-T)rnS = (m — 2) (m — 1) — rm(w). 
m=3 m ] 3 r2 

(13.5c) 

Setting T = 0 and w = w0 = l in (13 .5 ) , we obtain 

A 2 0 = ( l / 2 y) gi2(w0) = 1, 

i n - ( 1 / 4 y) q\ (w0) =1+2y, 
t02=(l/6y) r3(w0) = -2y(l+2y), 

and 
w ^ (0) = y2. 

In general, after n differentiations of (13.1a) 
with respect to T, we have 

This equation, for T = 0, consists of terms that are 
linear in X/lk , where h and k are non-negative inte-
gers that satisfy the condition h + k ^ n. From 
(12.4) one can see that, for A > 0, 

( _ 1 )k 

On the other hand, for h = 0, we have 

. ( - 1 ) * 
/ o ' A = 2 ( /c+1) y r * + i W (13.7b) 

/ i \ ft-fl Ä + 1 

The last step was performed with the aid of (12 .1 ) . 
By considering Eq. ( 1 2 . 2 ) , it is not difficult to 

convince oneself that the following formula is valid 

d h » f \ dw* ( «0 w=w, 

m 
2 i n + 1 P k - i ( i ) ( 2 y y g m _ l > t 

(13.7c) 
i=i 

where ph-i(Z) is a polynomial of degree h — 1. By 
applying the recursion relation (12 .3 ) , we have 
evaluated the first four of these polynomials 

p = - 1, Pi = I, p 2 = - ( Z + l ) ( Z - l ) , 
p 3 = ( Z + l ) ( Z 2 - Z - 3 ) . 

hk = 2(fc + l) y w=wt 

(13.7a) 

35 

dw5 qnm = 8 

- 4 

15 w 
(1 + M;2)3 

w 
1+M; S 

(2 <7m+1 + ,n + 2 ,n + 3i 

For h = 5, we obtain 

20 w3 

(1 + M;2) 
4 (6 qm + 1 1 qm + 6 q n m + i + q l + i ) 

(24 qnm+l + 50 qn
m

+Z + 35 q V » + 10 qnm+* + qnm+t>) M + 2 ,n + 3 ,« + 4 ,n + 5i (13.8) 

which leads to p4 = - (Z + l ) ( Z + 2) ( Z 2 - 3 Z - 3 ) . 

By using these results together with the formulas ( 1 3 . 7 ) , we have calculated all the partial derivatives 
contained in (13.6) for n ^ 5. These derivatives, evaluated for w = 1 and 7T = 0, are listed in the appen-
dix of Part II. 

Proceeding in the same manner as above in the case of n = 1 and n = 2, we obtain 

M,(3)(0) = y(y + l)2 and (0) = - y (7 y3 + 6 y2 - 2). 

For re = 5, Eq. (13.6) becomes 
[ d 5w 3 
1 d T5 3 w 

d3w 
+ 5 

dw d4w 
dr dr4 

33 

+ 1 ° dr3 3wdr + 5 

+ 2 
O ( d2w \2 

d l d r / 

d 2w d3w 
dr2 dT3 _ 

d *w 32 dw 
3w2 + 5 dr4 dwdr +5 dr 

dw d3w _ 
dr dr3 + 

fd2w\2 
t d r 2 / 

dr3 

d3«; 

+ 4 
dw 3 w3 33 

dT 3 3 dw2 3 r 
/ dw \3 d2w 34

 OA 
+ ( d r ) d r 2 3 ^ + 3 0 

d2w 34 

+ i U dr2 3«; 3r 3 + 
dw \2 dw_\5 3^ 

d r j dws + 5 \ d T ) 
dw\2 35 ~ djt> 35 

1 +2-at! dw* 3 r dr 3M;3 3 r2 + 2 

dw d2w dw 34 , 34 

dr 3M;3 3 r 3M;2 3T2 dr dr2 
dw 34 , 34 

dr 3M;3 3 r 3M;2 3T2 

35 (13.9) 
3M;2 3T3 

(13.9) 

dtv 35 35 ] 
+ 5 d r dwdT* + DR] 

By using the results listed in the appendix, we obtain from Eq. (13.9) 

«,(8) (0) = (7/3) (31 y4 + 120 y3 + 156 y2 + 72 y + 6 ) . 

Thus the first six terms of the series (13.1c) are 

£ ( f + £ ( 7 + 6 f - 2 ) + 3 ^ + 1 2 0 y . + 1 5 . y . + 7 2 / + 6 w5 = 1 + y T 
T 

1 + wry 2 ! 
(13.10) 

We have presented Eqs. (13.8) and (13.9) as a starting point for anyone who may wish to carry this 
calculation to higher values of n. 



14. Accuracy of Width Formula 

The series (13.1c) can be made as accurate as 
one wants by taking a sufficiently large number of 
terms. We have seen, however, that in practice the 
algebraic labor of calculating w ^ (0) increases ra-
pidly with h. Therefore the question arises how ac-
curate our formula is when it is terminated as in 
(13 .10 ) . 

An obvious method of estimating the error incur-
red is to use Taylor's formula with remainder. Thus 
we can write 

w(T) =wn(T) +Rn + l(T), 

where 
n rk 

wn = w 0 + 2 u > w ( 0 ) r r (14.1) 
k=1 

and 

Rn + 1 = w ( n + V ( 0 T ) ^ , 0 < ( 9 < 1 . 

Although this is the ideal way to treat the problem 
of accuracy, we cannot apply it readily because it 
is very difficult to estimate the sixth derivative of 
w(T) for T> 0. 

A direct way of ascertaining the accuracy of 
(13.10) is to compute exact values of w and to 
compare them with the corresponding values of w5 . 
What range of y should be covered by such compu-
tations? To answer this equation, we remember that 
the main area of application is in Mössbauer spec-
troscopy. Therefore the range of y should be chosen 
so as to cover the cases of interest in this area. As 
it was discussed in Section 6, y 4= 1 indicates the pre-
sence of environmental broadening. Our entire for-
malism is valid only if (see Section 6) the environ-
mental broadening is such that the average cross sec-
tion has a Lorentzian dependence on energy 

< « ( * » - t k w r m ^ T F - (14-2) 

We expect Eq. (14.2) to be a good approximation 
only for values of X\ close to unity. Similarly, in 
considering the environmental broadening in the 
source, we conclude that our formalism is likely to 
be valid only for values of Xg in the neighborhood 
of unity. Thus it appears that only values of y in the 
vicinity of y = 1 are of immediate interest. Therefore 
we have chosen y = 0.5, 1.0, and 2.0 for our investi-
gation of the accuracy. 

Values of w were computed by the Newton-Raph-
son method in two ways: 

(1) The equation 

e{y,s; wx) - ?e{y,s; 0 = 0 

was solved for wx. The function e and the derivative 
de/dwx were evaluated by numerical integration, as 
in the work of HEBERLE 11 for the case y = 1. Then 

w = wx/(y + 1). 

(2) We solved Eq. (13.1a) for w. The derivative 
3 / / 3 w was also computed as a series by making use 
of the results of Section 11. Thus numerical integra-
tions were avoided entirely. 

Satisfactory agreement was achieved between the 
results that were obtained by two so different me-
thods; this constitutes a check on the correctness of 
our mathematical developments. 

T 
0.5 

y 
1.0 2.0 

0.001 1.0005 1.0010 1.0020 
0 .05 1.0253 1.0512 1.1046 
0 .10 1.0511 1.1043 1.2165 
0 .20 1.1035 1.2143 1.4505 
0 .30 1.1564 1.3258 1.6821 
0 .40 1.2089 1.4360 1.9007 
0 .50 1.2605 1.5426 2 .1034 
0 .60 1.3108 1.6448 2 .2908 
0.80 1.4068 1.8354 2 .6272 
1.0 1.4965 2.0089 2.9247 
1.2 1.5804 2.1681 
1.4 1.6592 2.3155 
1.6 1.7336 
1.8 1.8041 
2.0 1.8714 

Table 1. Computed values of the width w for various values 
of T, and for three different values of y. The last digit in w 

is uncertain by ± 1, or less. 

The values of w are listed in Table 1. (In the case 
of y = 1 . 0 , values of wx are available in graphical 
f o r m 1 7 for 0 t ^ 29.) The case of 7 = 2.0 and 
T = 1.0 required the largest number of terms in Eq. 
(13.1a) ; it was necessary to include the term m = 37 
in order to achieve the desired accuracy. A compari-
son of the values of w with those of w5 is presented 
in Fig. 1. The result of the comparison may be epi-
tomized by stating, somewhat conservatively, that 
for these three values of y the deviation j w5 — w j is 
less than 2.0% of w for s ^ 5.0. In looking at Fig. 1, 
one may wonder why so many terms are required to 
describe curves that look almost like straight lines. 

17 L. D. ROBERTS and J. 0 . THOMSON, Phys. Rev. 129. 664 
[1963] ; see also D. W . HAFEMEISTER and E. B. SHERA, 
Nucl. Instr. Methods 41, 133 [1966] . 
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Fig. 1. Dimensionless width as a function of the thickness 
parameter T. The solid curves represent the exact values of w, 
whereas the dashed curves represent the approximate values 

ivg. The arrows indicate where w and w5 differ by 2.0%. 

It turns out that w3 is also a good approximation 
of w, and that it is true also for w3 that its accuracy 
is better than 2.0% for s ^ 5.0. Of course, for small 
values of T, the accuracy of w5 is much better than 
that of w3 . 

15. Application to Mössbauer Spectroscopy 

In terms of the quantities introduced in Section 6, 
have 

*a(*S+*A) ' (15.1) 

Then, according to (13.10) , the observed width is 
given by 

(*/4)2 (*/4)3 

2 ! ( X S + * A ) 3 ! « A 2 
r = r (*s + xA) +t/4+-

(t/4)'-

+ 
4!(*S + *A)3 

m 5 

5! 3(XS + *A)' 
\3 

7 + 6 ( — \XA 

31 + 120 ( — 1 + 1 5 6 , , .«A/ XXA! 

^ ^ ^ ^ (XA) + . . . 

*S\2 

XAJ 

(15.2) 

For a vanishingly thin absorber, W becomes 

w0=(xs + xA) r=rs+rA, 
in agreement with the result of Section 4a. We re-

18 V. A. BRYUKHANOV, N. N. DELYAGIN, and R. N. KUZ'MIN, 
Zh. Eksp. Teor. Fiz. 46, 137 [1964] , 

19 D. W. HAFEMEISTER, G. DEPASQUALI, and H. DE WAARD, 
Phys. Rev. 135, B 1089 [1964] . 

write Eq. (15.2) in terms of T T A and JF0 

( < / 4 ) 3 + 
(15.3) 

2! r 0 

r3 

3! FA-

and we note that, to the second order in t, W is a 
function of W0 but does not depend on either -Tg 
or r A separately. 

A frequent experimental problem is to measure fA 

and to determine the extent of environmental broad-
ening by measuring W0 . In Section 6 it was stated 
that 

t = n / A Ores, (15.4) 
where n is the number of nuclei of the resonant iso-
tope per unit area of the absorber. By measuring W 
for various values of n and then fitting these data 
with a suitable formula, it is possible to determine 
fA and JF0. This procedure has been used by 
B R Y U K H A N O V et a l . 1 8 f o r M g 2 S n 1 1 9 , b y HAFEMEI-
STER et a l . 1 9 f o r compounds of I 1 2 9 , and by PER-
LOW 20 for compounds of Xe129. 

We suggest that our width formula, as it is written 
in (15.2) or (15.3) , is perhaps more suitable for 
this purpose than the previously used formulas. 

16. Further Remarks 

If a digital computer is used to compute £ ac-
cording to the method outlined in Section 8, it ap-
pears necessary to create a three-dimensional array 
for storing the coefficients a(h,l,m). The improved 
formulation presented in Section 10 offers the ad-
vantage that, according to Eq. (10.10) , only a two-
dimensional array of binomial coefficients is requir-
ed. Thus a considerable saving in memory can be 
effected. 

It should not be thought that the new variables T 
and which were introduced in Section 12, are al-
ways superior to s and x. It seems to us that the new 
variables are better suited to the series, whereas the 
various integrals have a simpler form if expressed 
in terms of the old variables s and x. 

Among our reasons for listing the values of w in 
Table 1 is their usefulness in testing a program for 
computing £. This can be done by computing £ for 
x = 0 and for x= (y + 1) w and checking whether 
or not Eq. (9.1) is satisfied by these values of £. 

20 G. J. PERLOW, in : Chemical Applications of Mössbauer 
Spectroscopy, edited by V. I. GOLDANSKII and R. H. HER-
BER, Academic Press, New York 1968, p. 394 ff. 



From the results of Section 10, one can obtain a formula for a definite integral that is not listed in the 
standard tables 

T 
f/ a2 

J \z2 + a2 / 1 
dz 

+ (z+xy 
a(a + l) 

x 2 +(a + l ) 2 

m — 1 
+ m 2 A /[4(a + 1)]1 

a(a + l) 
x2 + (a + 1)2 

m—l 
2 

k—1 
2 I \ (m + l-ks 

U - l 
Jc-1 

Similarly, from Eqs. (10 .10 ) , (11.2) and (11 .3 ) , we obtain 
+ oo 

a (a+ l ) r ( °2 \m+i _ 
J lz2 + a2J 1 

z dz _ n a2 x 
+ (Z + x)2 ~ ~ x2+(a+l)2~ x 2 +(a + l ) 2 . 

m — l m —1 
+ ^ Z[4(a + l)]Z 

a(a + l) 
x 2 +(a + l )2 

-7 Z m—I 

In both formulas it is assumed that a ^ 0. 
These two articles have dealt with the behavior 

of £ and w in the case of absorbing layers of small 
thickness. An open question remains as to how these 
quantities behave for large values of 5 and T. 
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Appendix 

We list here the partial derivatives of X (£, T) evalu-
ated at f = l and T = 0. The notation is defined by Eq. 
(12.5). 

X01 = y, A 0 2 = - 2 y ( 2 y + l ) , 

0̂3 = y (14 y2 + 1 6 y + 5) , 
Ä)4 = — 2 y (24 y3 + 45 y2 + 30y + 7), 
; 0 5 = ( 2 y/3) (248 y4 + 660y3 

+ 693 y2 + 336y + 63), 
* i o = - l . An = 2 y + 1 , 
A 1 2 = - 2 ( y + l ) ( 2 y + l ) , 
A13 = 8y 3 + 25y 2 + 20y + 5 , 
Xu = — 2(8 y4 + 45 y3 + 63 y2 + 35y + 7), 
A20 = 1 , A21 = — (4 y + 1 ) , 
; 2 2 = 2(6 y2 + 5y + l ) , 
^23= - ( 7 + 1 ) (32 y2 + 25 7 + 5) , 
A30 = 0 , X31 = 6 y , 
; . 3 2 = - 4 y ( 8 y + 3) , A 4 0 = - 6 , 
/ 4 1 = 6(y + l ) , A50 = 30 . 


